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Abstract: The aim is to estimate the product of two arbitrary means of independent populations possibly
with dierent and unspecied distributions. We give a three-stage sequential design which allocates the
number of observations from each population such that the sample variance can be lowered up to second
order terms to its true lower bound. A new and interesting logarithmic first stage length is proposed and
the design is shown to be second order asymptotically optimal assuming at least one mean is non zero.
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1. Introduction

Effective estimation of the ratio and/or product of means relates to a more general problem
of estimating a nonlinear function of parameters, Maji et al. (2018), Raubenheimer and
van der Merwe (2012), Singh and Karpe (2009). A product of means like Bernoulli
proportions, Benkamra et al. (2015, 2013), Rekab and Wu (2015), Page (1990, 1987),
Poisson rates Kim (2006), Raubenheimer and van der Merwe (2012), is naturally involved
in series/parallel systems and software reliability. Product of normal means, Berger and
Bernardo (1989), Southwood (1978), Sun and Ye (1999, 1995), Yfantis and Flatman (1991),
is used in area estimation problems based on measurements of length and width or in
ecological systems such as the study of insect populations, Southwood (1978).

When the allocation schemes are constrained to cost or risk per unit observation, it is
possible to design sequential procedures that are ecient, at least asymptotically for large
samples, Benkamra et al. (2015, 2013), Rekab and Wu (2015), Zheng et al. (1998), Page
(1990, 1987), Woodroofe and Hardwick (1990).

Journal of Statistics and Computer Science
Vol. 1, No. 1, 2022, pp. 77-98
© ARF India. All Right Reserved
URL : www.arfjournals.com
https://DOI: 10.47509 /JSCS.2022.v01i01.06



78 Zohra Benkamra, Mekki Terbeche and Mounir Tlemcani

Assume that for i = 1, ..., n; a random variable Xi whose distribution is unknown but
is observable from a population (�

i
) such that moments exist up to a sucient order. If the

total sample size T is fixed, then the problem of mestimating a function of the means �
i
 =

�(X
i
) such as a sum or a product can be processed by sequential allocation. In such

procedures, the unknowns are the sample sizes m
i
 (the number of observations from

population (�
i
)) such that the sample variance can be made as small as possible. Asymptotic

optimality can be considered when the total sample size T is large, i.e. T � +�.
In this paper we give a three-stage sequential design for estimating a product two of

arbitrary means with possibly unspecied distributions assuming at least one of them is non
zero. This includes namely the case of two normal means with unknown and unequal
variances as in inference procedures encountered in Behrens-Fisher-type problems
Chaturvedi et al. (2020), Liu and Wang (2007). Recently, in Benkamra et al. (2015), a
linear version of this scheme was used for a particular case of estimating a product of
Bernoulli proportions. The scheme proposed here is based on the nonlinear expression of
the exact variance and it is shown to be asymptotically second order optimal in the sense
that the sample variance approaches the exact lower bound at a speed o(1/T � ) for all � < 2.
When the means are not zero, it is well known that optimality conditions are reduced to a
proportionality relation between sample sizes m

i
 and the coecients of variation ci of the

corresponding populations, Page (1990). However, when a population (�
i
) has a mean �

i
 =

0 (or close to 0), its coeficient of variation c
i
 is either undened or will approach innity and

its estimation is therefore sensitive to small changes in the sample mean. So the proposed
scheme is based rather on the inverse of these coecients of variation in order to keep nonlinear
terms signicant in the ratio m

i
 = T. Particular works in the literature can be found for

specied families of distributions such as the exponential family in a Bayesian framework
where posterior means are not zero as in reliability estimation problems when the parameters
are Bernoulli proportions subject to Beta-priors, see Benkamra et al. (2013), Page (1987)
and references therein. Throughout this work, we will restrict the study to the case of two
non simultaneously zero means 1 and 2. The populations are assumed independent and the
distributions may be unspecied. The main result of this work relies in a new choice of the
first stage length such as �(log(T))) in order to obtain second order asymptotic optimality
of the design, instead of powers of T as it has been used in the literature cited above.
Therefore, when one of the two means is zero (for example �1 = 0) then the partition m1 +
m2 = T will balance most of sampling units towards the non-zero mean population, i.e.
looks as m1 = o(T) and m2 = �(T), unlike the case where both means are non-zero which led
to sample sizes all proportional to T, i.e. m1 = �(T) and m2 = �(T). More precisely, the use
of nonlinear terms in the expression of exact lower bound of the sample variance is more
than necessary to take into account such sampling behavior when one of the two means
may be zero. In Section 2, we present the problem setting for two parameters. An exact
lower bound of the sample variance is derived in Section 3. In the fourth section, we propose
a first stage length L = log T, which to our knowledge is new with respect to discussions
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found on optimal few-stage designs, Hardwick and Stout (2002) and other references therein.
Asymptotic properties of the allocation numbers m1, m2 are derived for large total sample
size T. In Section 5, a three-stage procedure is presented similar to Benkamra et al. (2015)
where the authors have considered a product of Bernoulli proportions. The new scheme is
based on the nonlinear expression of the exact lower bound of the sample variance. We
then give the main result on the asymptotic efficiency up to second order of the sequential
design even in the case of one zero mean. In the sixth section, we present by Monte-Carlo
simulation some validation of the theoretical results obtained in both homogeneous and
heterogeneous couple of populations that we have specified in order to run the simulations.
An example with two simultaneously zero normal means is also presented in this section.
We observe that the allocation rule agrees with the asymptotic optimality condition. Finally,
proofs of Lemmas and the main theorem are given in Appendix, Section 7.

In all what follows, standard notations for asymptotic comparison in probability are
used as follows: f = o(g), f = �(g), respectively, as T ���, means that f is dominated by g
asymptotically with probability one, f is dominated and subjected to g asymptotically with
probability one, as T ���.

2. The Problem Setting

Assume that two random variables X1, X2 are conditionally independent, non degenerate
and have nite moments of order at least up to 4, that is for i = 1, 2, �(�X

i
�p) < +� for all p �

[1, 4[, in particular,

�[X
i
] = �

i
 < +�, 0 < V[X

i
] = �

i
2 < +� (2.1)

Suppose that a total and fixed number of observations T is allowed such that in each
population (�

i
) a sample size m

i
 is allocated for estimating the mean �

i
. Our aim in this

paper is to construct an allocation rule for sample sizes m1, m2 under the constraint m1 + m2

= T fixed, in order to estimate efficiently the product

��= �1�2.
We know that the following empirical estimator for  is unbiased and convergent,

1 21, 2,
ˆ ,m mX X� �

where , ii mX  is the sample mean of population (�
i
),

1
,

i

i

i

m

ijim j
i m

i i

XS
X

m m
�� �

�

Since such estimators are unbiased then the risk under quadratic loss reduces to the
sample variance ˆ ˆ( ) ( )R � � �� , here the probability measure for (X1, X2) is dened by the
product measure. Thus, assuming independence within and across populations, the sample
variance
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� � � � � � � �
1 2 1 2

2 2 2 2
1, 2, 1, 2,

ˆ( ) m m m mX X X X� � �� � � � � (2.2)

can be straight forwardly (see next section) written as a function of allocation numbers m1,
m2 and consequently can be lowered by choosing convenient designs or partitions of the
total sample size T = m1 + m2 when T is fixed.

3. Exact Lower Bound

In this section, we give a suitable expression of the exact lower bound of the sample variance.
We have

� � � � � �2 2
, , , , 1, 2,

i i ii m i m i mX X X i� � �� � �

and by relation (2.1), we obtain by (2.2) the following expression of the sample variance,

2 2 2 2 2 2
2 1 1 2 1 2

1 2 1 2

ˆ( ) .
m m m m

� � � � � �
� � � �� (3.1)

By a Lagrange-type identity one can write with the help of the constraint condition m1

+ m2 = T,

1 2
ˆ( ) ( , ),Q E m m� � ��

where

Q = 
2 2

2 21 2
2 1 1 2

1
,

T T T

� �� �
�� � � � � � � �
� �

(3.2)

E(m1, m2) = 

2
2 2

2 22 1
1 1 2 2 2 1

1 2

m m
T T

Tm m

� �� �
� � � � � � �� �

� � (3.3)

The quantity Q does not depend on m1, m2 and represents the exact lower bound for
ˆ( )��  under the constraint m1 + m2 = T. The second term E = E(m1, m2) � 0 is called the

excess of variance uncured by the design (m1, m2), such that m1 + m2 = T. When E = 0, i.e.,
when

2
2 1

2 1
1

2
2 2 2

1 2

,
m T
m

T

�
� � �

�
�

� � �
(3.4)

the design is called optimal, assuming that m1 and m2 are treated as continuous variables. In
addition, it is nonlinear since the proportionality ratio in (3.4) is a nonlinear function of the
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sample size T, unlike to what is found in the literature where this ratio is rather constant so
that m1, m2 become linear functions of T, Benkamra et al. (2015), Page (1990). More
specically, this non linearity is needed when one or both of the two means may be zero.
When 1 = 2 = 0, we remark that relation (3.4) implies that the optimal sampling design is
balanced, i.e. m1 = m2 = T/2, yielding E(m1, m2) = 0 and this even when �1 is not equal to �2.
In particular, this balanced or equal allocation rule happens when the populations have
equal parameters �1 = �2 and �1 = �2.

4. First Stage Sequential Design

In what follows, we will assume that at least one mean is non zero, for example �2 � 0.
Remark that the exact optimality conditions (3.4) can be written equivalently as

2
2 1

2 1

1 2 12 2
2 21 2

2 1 2 2

, ,Tm T m T m

T T

�
� � �

� � �
� �

� � � � � � �
(4.1)

which is the starting idea to construct sequential schemes to solve approximately the discrete
optimization problem when the parameters �1, �1 and �2, �2 are unknowns. Let us point
that the cases {�1 � 0, �2 � 0} and {�1 = 0, �2 � 0} give respectively rise to two dierent
behaviors of the sample size m1, such as m1 = �(T) in the first case and m1 = o(T) in the
second one, with probability one as T ���.

Let us denote by 2ˆ ˆ( , )i i� �  empirical estimators of (�
i
, �1

2), i = 1, 2, obtained by a first

stage sampling with sample size L � T = 4 for example in each population (�
i
). In the

literature, L is generally a function of T that must satisfy some conditions such as L ���
and L = o(T) at the same time, as T ���. For example, a standard candidate is L = �(T)

with 0 � < 1 fixed, or more usually ( )L T�� . Remark that when the product �1�2 may be

zero, such condition on first stage length L above is not sucient to reach second order
efficiency in the sequential design.

The following lemma is based on the strong law of large numbers (S.L.L.N) of
Marcinkiewicz which gives a rate of convergence in the (S.L.L.N) of Kolmogorov-
Khintchine, Stout (1974).

Lemma 1. Assume �2 ��0, �(�X
i
�p) < � for all p � [1, 4[, i = 1, 2, and dene ˆ im  by

2
2 1

2 1
1

2 2 2
2 21 2

2 1 2 2

ˆ
ˆ ˆ

ˆ
ˆ ˆ , ,

ˆ ˆ
ˆ ˆ ˆ ˆ

i

m Tm T m
T

T T

�
� � �

� � �
� �

� � � � � � �
(4.2)
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where 2ˆ ˆ,i i� �  are empirical estimators of �i, �i
2 based on same sample size L � T, i.e.,

2 2 2
, ,ˆ ˆ ˆ, ,i i L i i L iX X� � � � ��

such that L � +�, as T � +�. Then, if �1 � 0,

2
2 1

2 1
1

2 2
2 21 2

2 1 1 2

ˆ 1
,

q

m T o
T L

T T

�
� � �

� �� � � �
� �� �

� � � � � � �
 as T � +�, (4.3)

with probability one, for any q; 0 � q < 1/2. Moreover, if �1 = 0 then (4.3) remains true if in
addition L = o(T).

Remark that when �1 = 0, Equation (4.3) reduces simply under the condition L = o(T)
to

1ˆ 1
q

m
o

T L
� �� � �
� �

, as T � +�. (4.4)

In sequential design, the partition numbers m1, m2 have generally to grow both at same
order of the total sample size T = m1 + m2 as as T � +�,, i.e. m

i 
/T = �(1). However, in the

particular case when �1 = 0 and �2 � 0 in Lemma (1), one can observe that the sample size

1m̂  as given by relation (4.4) is no longer increasing at the same rate as T. We propose in
the following lemma a new first stage length, namely a logarithmic function of T, in order
to control this growing rate relatively to powers less than one of the total sample size T.

Lemma 2. Assume �2 � 0 and let 1m̂ , 2m̂  dened as in Lemma (1) associated to a first
stage length L = log T, then 2m̂  = �(T), and
(i) if �1 � 0, 1m̂  = �(T),

(ii) if �1 = 0, 1m̂  = o(T) and for all �, 0 ��� < 1, 1m̂

T � � ��  with probability one, as T �

+�.
Underline the fact that the particular case when �1 = �2 = 0 is not covered by this

Lemma. However, when �1 = 0 and �2 � 0, the second point (ii) of this lemma shows that
even though 1m̂  remains dominated by T for large samples, it nevertheless grows faster
than any power of T less than one. This is actually a main advantage in this case in order to
keep the proof of second order asymptotic optimality rightful.

5. A Sequential Three-stage Design for Estimating A Product of Non-Simultaneously
Zero Means

Assume in this section that 1 and 2 are not simultaneously zero, for example ��� 0. We will
denote by [x] the nearest integer to the real number x. Dealing with two parameters, one
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can start a design associated to a total sample size equals [T/2] instead of T and according
to Lemma (2) a first stage length L = [log(T/2)] such that we have always 2L ��[T/2] and L
� +� as T � +�. The sample sizes ˆ im  proposed by the first stage procedure (see Section
4 highlighting here that 1m̂  + 2m̂  = [T/2]) behave as described by Lemma (2). With these
sample sizes in hand, one can update in the second stage the moments estimators in order
to improve their accuracy. In a third and final stage, these rened moments estimators are
used to update ˆ im  according to the complete sample size T similarly as proposed in Lemma
(1)-Eq.(4.2).

The three-stage design

1st stage:

Sample L ��[T/4] from each population and evaluate the moments estimators

2
, ,1 12 2

,ˆ ˆ ˆ, , 1, 2.

L L

i j i jj j
i i L i i

X X
X i

L L
� �� � � � � �� �

� �
(5.1)

2nd stage:

Sample ˆ im  – L more observations in population �
i
, such that

� �2 1 1 ,ˆ ˆ ˆ, min max , [ ] , ,
2 2L L

T T
m m m L S L

� �� � � �� � � �� �� � � �� � � �� �
(5.2)

where

2
2 2

2 1

, 2 2
2 22 2

2 1 1 2

ˆ
ˆ ˆ

2 ˆ ˆ
ˆ ˆ ˆ ˆ

L L

T TS

T T

�
� � �

�
� �

� � � � � � �
(5.3)

and update the moments estimators by

ˆ 2
, ,1 12 2

ˆ,ˆ ˆ ˆ, , 1, 2.
ˆ

i

i

m L

i j i jj j
i i m i i

i

X X
X i

m L
� �� � � � � �� �

� �
(5.4)

3rd stage:

Sample m
i
 – ˆ im  more in population �

i
, such that

1 2ˆ ˆ2 1 1 1 , 2ˆ ˆ, min{max{ , [ ]}, },m mm T m m m S T m� � � � (5.5)

where
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1 2

2
2 2

2 1

ˆ ˆ, 2 2
2 22 2

2 1 1 2

ˆ
ˆ ˆ

,
ˆ ˆ

ˆ ˆ ˆ ˆ
m m

TS T

T T

�
� � �

�
� �

� � � � � � �
(5.6)

update the empirical means by

,1
, , 1, 2,

i

i

m

i jj
i m

i

X
X i

m
�� �

�

and estimate the product of means �1�2 by

1 21, 2,
ˆ .m mX X� �

Theorem 1. Under the same assumptions of Lemma 1, let m1, m2 given by the three-
stage design with a first stage length L = [log(T/2)], then the excess of variance of

1 21, 2,
ˆ

m mX X� �  incurred by the sampling design {m1, m2} satisfies

1 2

1
( , )E m m o

T �

� �� � �
� �

(5.7)

as T � +�, with probability one, for all �, 0 � � < 2.
It should be pointed in this theorem that contrary to what is used in the literature L =

( )T�  for first stage length, this choice is no longer sucient when one of the two means
may be zero, as far as the corresponding sample size becomes dominated by T. Hence, the
choice of a logarithmic first stage length imposes itself by the result (ii) of Lemma (2).
Moreover, the case of two zero means �1 = �2 = 0 is not yet covered by this theoretical
result. Despite this, the simulation shows promising results.

6. Monte-Carlo Simulation

In this section, we will show dierent experiments in order to validate the theoretical results
obtained above. We will consider a total sample size T increasing from 2 to 100 by step of
�T = 1. All the Monte-Carlo (MC) simulations were done with 5000 replication when
sampling, Robert and Casella (2004). We will present respectively homogeneous and
heterogeneous couples of distributions. Balanced and unbalanced cases will correspond to
the situations where the allocation numbers m1 and m2 are equal or unequal, respectively.

In order to validate second order asymptotic optimality, plots of the decay speed T�(m1,

m2) are given for a power � = 1.99 where E(m1, m2) = ˆ( )ar Q� ��  denotes the excess of
variance. This power was chosen less than 2 because the convergence result given by
Theorem 1 is not valid for � = 2. This fact is due to the rate of convergence given by the
strong law of large numbers which is upper limited by the central limit theorem. However,
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because of the centrallimit theorem and since we consider in this paper asymptotic estimation
with large samples, several examples are given with normal means.

6.1. Experiments with two means with Common Distribution

6.1.1. Product of two Bernoulli means

We consider a simple case of two proportions p1 and p2 in ]0, 1[. For example, with p1 = 0.5
and p2 = 0.1 in unbalanced case and p1 = p2 = 0.1 in the balanced situation. Figure 1 (A-1:
unbalanced and B-1: balanced) shows T� times the excess of variance over the true lower

bound incurred by 3-stage design with � = 1.99, i.e., 1.99 ˆ( ( ) )T ar Q� ��  where Q is the

exact lower given by (3.2). In Figure 1 - A-2, the ratio 
1

2

m

m  converges eectively with

probability one to the expected proportion (unbalanced case) given by (3.4), i.e.

2 2 12 1

1 2 1 1 2

(1 )
3

(1 )

p p pp

p p p p

��
� �

� �

and in Figure 1 - B-2 we can observe namely that this ratio tends to 1 which means that m1

= m2 � T/2, i.e. asymptotically the design becomes balanced.

Figure 1. Three-stage design - Bernoulli proportions - A. Unbalanced case p
1
 = 0.5, p

2
 = 0.1, and B.

Balanced case p
1
 = p

2
 = 0.1.
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6.1.2. Product of two Poisson Rates

We consider now the case of two Poisson rates �1 and �2 in ]0, +�[. For example, with �1

= 1 and �2 = 2 in unbalanced case and �1 = �2 = 2 in the balanced situation. Figure 2 (A-1:
unbalanced and B-1. balanced) shows T � times the excess of variance over the true lower

bound incurred by the 3-stage design with � = 1.99, i.e., T1.99E(m1, m2) = 1.99 ˆ( ( ) )T ar Q� ��

where Q is the exact lower bound. We see in Figure 2 - A-2 that the ratio 
1

2

m

m  converges

with probability one to the expected proportion

2 1 2 1

1 2 1 2

0.7071
� � � �

� �
� � � �

and in Figure 2 - B-2 we can observe namely that this ratio tends to 1 which means that
asymptotically the design becomes balanced.

6.1.3. Product of two uniform means

We consider here the case of two uniform means �1 and �2 in ]0, +�[. For example, �1 = 2.5
and �2 = 3 in unbalanced case and �1 = �2 = 3 in the balanced situation. Figure 3 (A-1:
unbalanced and B-1: balanced) shows T� times the excess of variance over the true lower

Figure 2. Three-stage design - Poisson rates - A: Unbalanced case 
1
 = 1, 

2
 = 2, and

B: Balanced case 
1
 = 

2
 = 2.
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bound incurred by 3-stage design with � = 1.99. In Figure 3 - A-2, the ratio 
1

2

m

m  converges

with probability one to

2
1

2 1

11 2
2

3 1

3

�
�

� �
� �
�� � � (6.1)

and in Figure 3 - B-2 we can also observe that this ratio tends to 1. Specically in the case of
uniform populations, the balanced design is the best for any �1, �2 non zero as indicated by
(6.1). Namely, this same result will happen for any distribution whose standard deviation is
proportional to its mean, for example in the case of an exponential distribution �(�)

parametrized by � = 1/� since its variance equals �2. In fact, the ratio 
1

2

m

m �converges with

probability one to

2 1 2 1

1 2 1 2

1
� � � �

� �
� � � � (6.2)

6.1.4. Product of two non zero normal means - �
1
�

2
 � 0

Consider two normal means �1 and �2 in ]–�, +�[ such that �1�2 � 0. A: Unbalanced case
�1 = –1, �2 = 1.5, �1 = 1, �2 = 2.5, and B: Balanced case �1 = �2 = 1.5 and �1 = �2 = 2.5.
Figure 4 (A-1: unbalanced and B-1: balanced) shows T� times the excess of variance over
the true lower bound incurred by 3-stage design with � = 1.99. In Figure 4 - A-2 the ratio

1

2

m

m  converges with probability one to the expected proportion

2 1

1 2

1.6667,
� �

�
� �

and in Figure 4 - B-2 we can observe namely that this ratio tends to 1 which means that
asymptotically the design becomes balanced.

6.1.5. Product of two normal means - case �
1
�

2
 = 0

Consider two normal means �1 and �2 in ]–�, +�[ such that �1�2 = 0. A: Unbalanced case
�1 = 0, �2 = 1.5, �1 = 1, �2 = 2.5, and B: Balanced case �1 = �2 = 0 and standard deviations
�1 = 1, �2 = 2.5. Figure 5 (A-1: unbalanced and B-1: balanced) shows T times the excess of
variance over the true lower bound incurred by 3-stage design with � = 1.99. In Figure 5 -

A-2, the ratio 
1

2

m

m  converges with probability one to zero while in Figure 5 - B-2 we can

observe that this ratio tends to 1 which means that m1 = m2 � T/2, i.e. asymptotically the
design becomes balanced.
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Figure 4. Three-stage design - Normal means - A: Unbalanced case 
1
 = –1, 

2
 = 1.5, 

1
 = 1,

2
 = 2.5, and B. Balanced case 

1
 = 

2
 = 1.5 and 

1
 = 

2
 = 2.5.

Figure 3. Three-stage design - Uniform means - A: Unbalanced case 1 = 2.5, 2 = 3, and
B: Balanced case 

1
 = 

2
 = 3.
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Remark that numerically the case �1 = �2 = 0 behave right according to the exact
(balanced) design m1 = m2 � T/2, as shown in Figure 5 B-2. Unfortunately, theoretical
proof of convergence with probability one in the case �1 = �2 = 0 remains not achieved in
this framework. However, the simulation has shown that the choice L = �(log T) for first
stage sample size, intensively tested by the authors, gives in many other and dierent situations
the true solution of the optimization problem, i.e., the balanced partition m1 = m2 with a
second order excess of variance incurred by the design, see Figure 5 B-1. We have also
tested the case of non simultaneously zero normal means to highlight the fact that a standard

choice of first stage length ( )L T��  results effectively in a loss of second order
convergence of the three-stage design as shown in Figure 6. The experiment is same as
above with the two normal populations �(0, 1) and �(1, 0.1). We observe only a first order
rate of convergence. T�(m1, m2) is not decreasing with T for ��= 1.99, it is bounded for � =
1.5 and decreasing for � = 1. This fact conrms the inadequacy of standard first stage length
when one of the two means may be zero.

6.2. Experiments with two means of Dierent Distributions

6.2.1. Product of Normal by Bernoulli means

In this experiment, we consider the product � = �p where � is the mean of a normal population
�(�,��) and p �]0, 1[ is a Bernoulli parameter. Figures 7 A- and 7 B- show MC simulation

Figure 5. Three-stage design - Normal means with 
1 2

 = 0 - A: Unbalanced case 
1
 = 0, 

2
 = 1.5,

1
 = 1, 

2
 = 2.5, and B: Balanced case 

1
 = 

2
 = 0, 

1
 = 1, 

2
 = 2.5.
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for test cases {� = 1.5, p = 2.5, p = 0.3} as example for ��� 0 and {� = 0, � = 2.5, p = 0.3}
as example for � = 0, respectively. The excess of variance behaves in both cases correctly,
see Figure 7 A-1, B-1. Likewise for the ratio m1/m2. As expected, m1/m2 � 0 when � = 0,
see Figure 7 B-2.

6.2.2. Product of Normal by Exponential means

In this experiment, we consider the product � = �.1/� where � is the mean of a normal
population �(�, �) and 1/���]0, +�[ the exponential mean. Figures 8 A- and 8 B- show
MC simulation for test cases {� = 1.5, � = 2.5, 1/� = 0.3} as example for ��� 0 and {� = 0,
� = 2.5, 1/� = 0.3} as example for � = 0, respectively. The excess of variance behaves in
both cases correctly, see Figure 8 A-1 B-1. Likewise for the ratio m1/m2. As expected, m1/m2

� 0 when � = 0, see Figure 8 B-2.

6.2.3. Product of Exponential by Uniform means

This is a particular example where the allocation will be independent of the parameters of
the distributions. In fact, let us consider the product � = 1/�.��where � is the scale parameter
of an exponential distribution �(�) and � the mean of a uniform variable �(2�). Here, �1 =
�1 = 1/� for �(�) and �2 = �, �2 = / 3�  for �(2�). Hence forth, the exact optimality
condition 3.4 gives asymptomatically, for large samples (T � +�):

Figure 6. Loss of second order convergence relative to the choice of first stage length L = ( /2)T .
Normal means with 

1
 = 0, 

2
 = 1, 

1
 = 1, 

2
 = 0.1. The three-stage design is only first order w.r.t. T.
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 Figure 8. Three-stage design - Normal by Exponential means with - A: case 
1
 =  = 1.5, 

2
 = 1/  =

0.3, 
1
 =  = 2.5, and B. case 

1
 =  = 0, 

2
 = 1/  = 0.3, 

1
 =  = 2.5.

Figure 7. Three-stage design - Normal by Bernoulli means with - A: case 
1
 =  = 1.5, 

2
 = p = 0.3, 

1

=  = 2.5, and B. case 
1
 =  = 0, 

2
 = p = 0.3, 

1
 =  = 2.5.
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2
2 1

2 1
1 2 1

2
2 1 22 2

1 2

1/ 3 0.5774
m T
m

T

�
� � � � �

� � �
� ��

� � �

�

The allocation ratio 0.5774 is well validated in Figure 9 and this result can be
observed for several other values of the parameters in many other experiences that are not
shown here.

6.2.4. Product of Normal by Uniform means

As last example, we consider the product � = �.�2 where � is the mean of a normal population
�(�, �) and �2 �]0, +�[ a uniform mean.

Figures 10 A- and 10 B- show MC simulation for test cases {� = 1.5, � = 2.5, �2 = 1.5}
as example for ��� 0 and {� = 0, � = 2.5, �2 = 1.5} as example for � = 0, respectively. The
excess of variance behaves in both cases as desired, see Figure 10 A-1 B-1. As expected,
m1/m2 � 0 when � = 0, see Figure 10 B-2.

7. Conclusion

We have proposed a new first stage length and a three-stage design for a nonlinear problem
of estimating a product of two arbitrary non simultaneously zero means (possibly with
unspecied distributions). The choice of a logarithmic first stage length works well and is
justied theoretically except for the case where both the two means are zero. In fact, when

Figure 9. Three-stage design - Exponential by uniform means with  = 10 and  = 1. Asymptotically,
the allocation ratio tends to the exact value 0.5774.
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one mean may be zero, the logarithmic choice is to our knowledge the only one who lets
the sampling goes completely over the non zero mean population and conserves the second
order convergence of the three-stage design. This is a consequence of the fact that when T
� +�, log T � +� while remaining negligible compared to any positive power of T, i.e.
log T/T� � 0 for all ��> 0. Unfortunately, the problem of two simultaneously zero means
still not solved in this paper and needs further theoretical analysis. The general case of
several arbitrary means can be considered in perspective.
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Appendix

Proof of Lemma 1

Since the random variables X
i
 and X

i
2 have moments of any order p � [1, 2[ then the rate of

convergence in the S.L.L.N of Marcinkiewicz gives, with probability one, as the sample
size L � +�, for any q � [0, 1/2[,

Figure 10. Three-stage design - Normal by uniform means with - A: case 
1
 =  = 1.5, 

2
 = 

2
 = 1.5, 

1

=  = 2.5, and B: case 
1
 =  = 0, 

2
 = 

2
 = 1.5, 

1
 = = 2.5.
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ˆ i� = ,

1
,i L i q

X o
L

� �� � � � �
� �

(7.1)

2ˆ i� = 
2 2 2
,

1
ˆ ,i L i i q

X o
L

� �� � � � � � �
� �

(7.2)

which yield, since L � +� as T � +�,
2 2

2 2
2

ˆ 1 1 1 1
ˆ .i i

i i i q q q
o o o

T T L L T L

� � � � � � � �� � � � � � � � �� � � � � �
� � � � � �

(7.3)

Thus, if �
i
 � 0 the last two terms in the the r.h.s of (7.3) are dominated by 

1
i q
o

L
� �� � �
� �

such that one obtains,

2 2
2 2ˆ 1

ˆ ,i i
i i q

o
T T L

� � � �� � � � � � � �
� �

and if not, i.e. �
i
 = 0, then (7.3) implies

2 2
2 ˆ 1 1

ˆ ,i i
i q q

o
T T L L

� � � � � �� � � � �� � � �
� � � �

(7.4)

since L2q = o(T) in this case. Henceforth, (4.3) follows immediately and the proof is nished.

Proof of Lemma 2

Relation 2m̂  = O(T) follows from both (i) or (ii). Assertion (i) follows immediately from
Lemma 1 - Eq. (4.3) with m1 � 0. In the case (ii) - m1 = 0, it is clear that 1m̂  = o(T) as T �
+� by the same Equation (4.2), and one has from the denition of 1m̂  given by (4.2), for any
�, 0 < ��� 1,

2 2 2 1 2
2 1 11 1

1 2 2
2 21 2

2 1 1 2

ˆ ˆ ˆˆ ˆ
.

ˆ ˆ
ˆ ˆ ˆ ˆ

T Tm m
T

T T

T T

� ��
�

��

� � � �
� �

� �
� � � � � � �

(7.5)

Forget the denominator since it always converges with probability one to a positive
constant as T � +�, when �2 � 0.

Thus, if � > 1/2, 2� – 1 > 0 and since 2
1�̂  ���1

2 > 0, then T2�–1 2
1�̂  ��+� which yields

T�–1
1m̂  � +� with probability one, as T � +�.

Otherwise, if 0 < � � 1/2, 2� – 1 � 0 then T2�–1 2
1�̂  becomes bounded but 2 2

1ˆT ��  does

not. Indeed, one has by the central limit theorem, since �1 = 0,

1

1

ˆ
(0,1)dL

�
���

�
�
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in distribution, as T � +�, in one hand, which writes

1
2

1

ˆ
(0,1).dL

T
T

�
�

�
���

�
� (7.6)

But since L = log T and � > 0 then 2
0

L

T � �  as T � +� forcing hence the second

term 
1

1

ˆ
T � �

�  to be unbounded because if not then the hole sequence converges to zero with

probability one, as T � +�, i.e.

1
2

1

ˆ
0,

L
T

T
�

�

�
�

�

which is in contradiction with (7.6). Henceforth, the sequence 1ˆT ��  is unbounded, with

probability one, which implies that 1
1

m̂

T �� � ��  and achieves the proof of (ii) with � = 1 –

�, for all �, 0 � ��< 1.

Proof of Theorem 1.

By assumption on L = [log(T/2)], L ��[T/4], L = o(T), L � +�, as T � +�.
It is clear that for large T, one has with the help of Lemma (2), either [S

L,L] = �(T) if �1

� 0, or [S
L,L] = o(T) and T–�[S

L,L] � +� for any ��< 1 if �1 = 0. In both cases, this leads to
[S

L,L] � [log(T/2)] = L for T large enough, yielding hence

1m̂ = max{L, [S
L,L]} = [S

L,L], 1m̂  + 2m̂  = [T/2].
Henceforth, behaviors of 1m̂  and 2m̂  are readily described by Lemma (1) and Lemma

(2) for large sample size T.

Similarly and by construction, 
1 2ˆ ˆ,[ ]m mS  behaves like twice [S

L,L], i.e. 2 1m̂ , for large T,
in such a way that one obtains

1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ1 1 , , , ,ˆmax{ , [ ]} max{[ ], [ ]} [ ]m m L L m m m mm m S S S S� � �

for T large. It follows by Lemma (1) that for any ����[0, 1/2[,

1 2ˆ ˆ,m mS

T

� �
�

� �
�
� �

�

2
2 1

2 1

2 2
2 21 2

2 11 2

,T

T T

�
� � �

�
� �
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2
2 1

2 1

2 2
12 21 2

2 1 1 2

1
,

ˆ
T o

m

T T

�

�
� � �
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so that by Lemma (2), one has either 
1 2ˆ ˆ,[ ]m mS  = �(T) if �1 � 0, or 

1 2ˆ ˆ,[ ]m mS  = o(T) and T–

�
1 2ˆ ˆ,[ ]m mS  � +� for any � < 1 if �1 = 0, while m2 = T – m1 stills always an �(T) since 2 is

assumed non zero. Thus m1 is at most an �(m2) when �1 � 0 and otherwise m1 = o(m2) for
large samples. Hence, for any ��� [0, 1/2[, Lemma (1) gives in one hand,

2 2
2 21 2 2 1

1 2 2 1
1 2 1

1 1 1
.

m m
o o o

T T T T m m m� � �

� � � � � � � �� � � � � � � � � �� � � � � �
� � � � � �

(7.7)

On the other hand, if �1 � 0, m1, m2 being of same order of T � +�, thus

1 1 2

1 1 1
, ,

T
o o

m T m m T� �

� � � � � �� �� � � �� � � � � �� �
� (7.8)

and if �1 = 0, �1 = o(T) implies m2 = T ��m1 = �(T) and by Lemma (2), for any �, 0 ����<
1, T–�m1 � +�, thus

1

1 1
o

m T �

� �� � �
� �

and one obtain

1 1 2

1 1 1
, ,

T
o o

m T m m T� �� �

� � � �� �� � � �
� � � � (7.9)

since T/m2 = �(1), for large T and for any � such that 0 ��� < 1. We obtain henceforth,
using (7.7), (7.8) and (7.9),

E(m
1
, m

2
)

2
2 2

2 2 21 2 2 1
1 2 2 1

1 2

.

m m
T

T T T T
Tm m

� �� �
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� ��

12 1

1(2 1)

1
, if 0,

1
, if 0,

o
T

o
T
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�� �

� � � � �� ��� � �� �
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with probability one, for any ��� [0, 1/2[, and all ����[0, 1[. Thus in all cases of {�1, �2 �
0}, one concludes that

1 2

1
( , )E m m o

T �

� �� � �
� �

with probability one as T � +�, for all ��� [0, 2[, � = 2� + 1 if �1 ��0 and � = (2� + 1)� if
not, which ends the proof.
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